19,456 research outputs found

    Crystallization of medium length 1-alcohols in mesoporous silicon: An X-ray diffraction study

    Full text link
    The linear 1-alcohols n-C16H33OH, n-C17H35OH, n-C19H37OH have been imbibed and solidified in lined up, tubular mesopores of silicon with 10 nm and 15 nm mean diameters, respectively. X-ray diffraction measurements reveal a set of six discrete orientation states (''domains'') characterized by a perpendicular alignment of the molecules with respect to the long axis of the pores and by a four-fold symmetry about this direction, which coincides with the crystalline symmetry of the Si host. A Bragg peak series characteristic of the formation of bilayers indicates a lamellar structure of the spatially confined alcohol crystals in 15 nm pores. By contrast, no layering reflections could be detected for 10 nm pores. The growth mechanism responsible for the peculiar orientation states is attributed to a nano-scale version of the Bridgman technique of single-crystal growth, where the dominant growth direction is aligned parallelly to the long pore axes. Our observations are analogous to the growth phenomenology encountered for medium length n-alkanes confined in mesoporous silicon (Phys. Rev. E 75, 021607 (2007)) and may further elucidate why porous silicon matrices act as an effective nucleation-inducing material for protein solution crystallization.Comment: 4 pages, 4 figures, to appear as a Brief Report in Physical Review

    Physics Potential of a 2540 Km Baseline Superbeam Experiment

    Full text link
    We study the physics potential of a neutrino superbeam experiment with a 2540 km baseline. We assume a neutrino beam similar to the NuMI beam in medium energy configuration. We consider a 100 kton totally active scintillator detector at a 7 mr off-axis location. We find that such a configuration has outstanding hierarchy discriminating capability. In conjunction with the data from the present reactor neutrino experiments, it can determine the neutrino mass hierarchy at 3 sigma level in less than 5 years, if sin^2(2*theta13) > 0.01, running in the neutrino mode alone. As a stand alone experiment, with a 5 year neutrino run and a 5 year anti-neutrino run, it can determine non-zero theta13 at 3 sigma level if sin^2(2*theta13) > 7*10^{-3} and hierarchy at 3 sigma level if sin^2(2*theta13) > 8*10^{-3}. This data can also distinguish deltaCP = pi/2 from the CP conserving values of 0 and pi, for sin^2(2*theta13) > 0.02.Comment: 16 pages, 7 figures and 1 table: Published versio

    Minimal Neutrino Beta Beam for Large theta_13

    Full text link
    We discuss the minimum requirements for a neutrino beta beam if theta_13 is discovered by an upcoming reactor experiment, such as Double Chooz or Daya Bay. We require that both neutrino mass hierarchy and leptonic CP violation can be measured to competitive precisions with a single-baseline experiment in the entire remaining theta_13 range. We find that for very high isotope production rates, such as they might be possible using a production ring, a (B,Li) beta beam with a gamma as low as 60 could already be sufficient to perform all of these measurements. If only the often used nominal source luminosities can be achieved, for example, a (Ne,He) beta beam from Fermilab to a possibly existing water Cherenkov detector at Homestake with gamma \sim 190-350 (depending on the Double Chooz best-fit) could outperform practically any other beam technology including wide-band beam and neutrino factory.Comment: 11 pages, 2 figures, 1 tabl

    Structural and electronic properties of ScnOm (n=1~3, m=1~2n) clusters: Theoretical study using screened hybrid density functional theory

    Full text link
    The structural and electronic properties of small scandium oxide clusters ScnOm (n = 1 - 3, m = 1 - 2n) are systematically studied within the screened hybrid density functional theory. It is found that the ground states of these scandium oxide clusters can be obtained by the sequential oxidation of small "core" scandium clusters. The fragmentation analysis demonstrates that the ScO, Sc2O2, Sc2O3, Sc3O3, and Sc3O4 clusters are especially stable. Strong hybridizations between O-2p and Sc-3d orbitals are found to be the most significant character around the Fermi level. In comparison with standard density functional theory calculations, we find that the screened hybrid density functional theory can correct the wrong symmetries and yield more precise description for the localized 3d electronic states of scandium.Comment: 8 figure

    R2D2 - a symmetric measurement of reactor neutrinos free of systematical errors

    Full text link
    We discuss a symmetric setup for a reactor neutrino oscillation experiment consisting of two reactors separated by about 1 km, and two symmetrically placed detectors, one close to each reactor. We show that such a configuration allows a determination of sin22θ13\sin^22\theta_{13} which is essentially free of systematical errors, if it is possible to separate the contributions of the two reactors in each detector sufficiently. This can be achieved either by considering data when in an alternating way only one reactor is running or by directional sensitivity obtained from the neutron displacement in the detector.Comment: 11 pages, 3 figures, clarifications added, some numbers in relation with the neutron displacement corrected, version to appear in JHE

    Resolving Octant Degeneracy at LBL experiment by combining Daya Bay Reactor Setup

    Full text link
    Long baseline Experiment (LBL) have promised to be a very powerful experimental set up to study various issues related to Neutrinos. Some ongoing and planned LBL and medium baseline experiments are - T2K, MINOS, NOvA, LBNE, LBNO etc. But the long baseline experiments are crippled due to presence of some parameter degeneracies, like the Octant degeneracy. In this work, we first show the presence of Octant degeneracy in LBL experiments, and then combine it with Daya Bay Reactor experiment, at different values of CP violation phase. We show that the Octant degeneracy in LBNE can be resolved completely with this proposal.Comment: 4 pages, 8 figure

    Novel electronic and magnetic properties of BN sheet decorated with hydrogen and fluorine

    Get PDF
    First principles calculations based on density functional theory reveal some unusual properties of BN sheet functionalized with hydrogen and fluorine. These properties differ from those of similarly functionalized graphene even though both share the same honeycomb structure. (1) Unlike graphene which undergoes a metal to insulator transition when fully hydrogenated, the band gap of the BN sheet significantly narrows when fully saturated with hydrogen. Furthermore, the band gap of the BN sheet can be tuned from 4.7 eV to 0.6 eV and the system can be a direct or an indirect semiconductor or even a half-metal depending upon surface coverage. (2) Unlike graphene, BN sheet has hetero-atomic composition, when co-decorated with H and F, it can lead to anisotropic structures with rich electronic and magnetic properties. (3) Unlike graphene, BN sheets can be made ferromagnetic, antiferromagnetic, or magnetically degenerate depending upon how the surface is functionalized. (4) The stability of magnetic coupling of functionalized BN sheet can be further modulated by applying external strain. Our study highlights the potential of functionalized BN sheets for novel applications.Comment: 18 pages, 6 figures, and 1 tabl

    Multi-component symmetry-projected approach for molecular ground state correlations

    Get PDF
    The symmetry-projected Hartree--Fock ansatz for the electronic structure problem can efficiently account for static correlation in molecules, yet it is often unable to describe dynamic correlation in a balanced manner. Here, we consider a multi-component, systematically-improvable approach, that accounts for all ground state correlations. Our approach is based on linear combinations of symmetry-projected configurations built out of a set of non-orthogonal, variationally optimized determinants. The resulting wavefunction preserves the symmetries of the original Hamiltonian even though it is written as a superposition of deformed (broken-symmetry) determinants. We show how short expansions of this kind can provide a very accurate description of the electronic structure of simple chemical systems such as the nitrogen and the water molecules, along the entire dissociation profile. In addition, we apply this multi-component symmetry-projected approach to provide an accurate interconversion profile among the peroxo and bis(μ\mu-oxo) forms of [Cu2_2O2_2]2+^{2+}, comparable to other state-of-the-art quantum chemical methods

    Molecular effects in the ionization of N2_2, O2_2 and F2_2 by intense laser fields

    Full text link
    In this paper we study the response in time of N2_2, O2_2 and F2_2 to laser pulses having a wavelength of 390nm. We find single ionization suppression in O2_2 and its absence in F2_2, in accordance with experimental results at λ=800\lambda = 800nm. Within our framework of time-dependent density functional theory we are able to explain deviations from the predictions of Intense-Field Many-Body SS-Matrix Theory (IMST). We confirm the connection of ionization suppression with destructive interference of outgoing electron waves from the ionized electron orbital. However, the prediction of ionization suppression, justified within the IMST approach through the symmetry of the highest occupied molecular orbital (HOMO), is not reliable since it turns out that, e.g. in the case of F2_2, the electronic response to the laser pulse is rather complicated and does not lead to dominant depletion of the HOMO. Therefore, the symmetry of the HOMO is not sufficient to predict ionization suppression. However, at least for F2_2, the symmetry of the dominantly ionized orbital is consistent with the non-suppression of ionization.Comment: 19 pages, 5 figure
    corecore